
Eliminating Covert Flows with Minimum Typingsy

Dennis Volpano

Computer Science Department

Naval Postgraduate School

Monterey� CA ������ USA

E�mail� volpano�cs�nps�navy�mil

Geo�rey Smith

School of Computer Science

Florida International University

Miami� FL ��	��� USA

E�mail� smithg�cs�fiu�edu

Abstract

A type system is given that eliminates two kinds of

covert �ows in an imperative programming language�

The �rst kind arises from nontermination and the other

from partial operations that can raise exceptions� The

key idea is to limit the source of nontermination in

the language to constructs with minimum typings� and

to evaluate partial operations within expressions of try
commands which also have minimum typings� A mu�

tual progress theorem is proved that basically states that

no two executions of a well�typed program can be distin�

guished on the basis of nontermination versus abnormal

termination due to a partial operation� The proof uses

a new style of programming language semantics which

we call a natural transition semantics�

�� Introduction

In ���� we gave a type system for secure information
�ow in a core imperative language� The type system is
composed of a set of types and typing rules for deducing
the types of expressions and commands� Types corre�
spond to partially�ordered security classes like low 	L

and high 	H
� where L � H� The ordering is the basis
for a subtype relation which allows upward information
�ows� We proved a form of noninterference for the type
system� However� the system does not address covert
�ows in programs that arise from nontermination and
partial operations�

To illustrate these kinds of �ows� we give part of the
thread bodies of two Java applets that merely prompt

yThis material is based upon activities supported by DARPA

under contract BEA ������� and by the National Science Foun�

dation under grant CCR��������	 Appears in Proc	 �
th IEEE

Computer Security Foundations Workshop� Rockport MA� June

����	

a client for a password via a text �eld� The �rst applet
creates an inspector thread for each character in the
password� Part of the inspector thread body is given
in Figure �� It loops inde�nitely when it discovers the

while 	p�charAt	i
 �a�

�

ps�println	i� � not a�
�
while 	p�charAt	i
 �b�

�
ps�println	i� � not b�
�

Figure �� Covert Flow from Nontermination

character stored at position i� Until then� it records the
characters it has examined by opening a socket connec�
tion back to another port on the server from which the
applet originated� This connection is permitted under
the current �sandbox� model of Java security� A sim�
ilar inspector thread body can be designed to reveal
a password using a partial operation� Part of such a
body is given in Figure �� It uses division and fails to

if 	��	p�charAt	i
 � �a�
 �

�

ps�println	i� � not a�
�
if 	��	p�charAt	i
 � �b�
 �

�
ps�println	i� � not b�
�

Figure �� Covert Flow from a Partial Operation

catch the arithmetic exception� The thread bodies of
the preceding examples are well typed in our original
secure��ow type system�

�

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
01 JUN 1997

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Eliminating Covert Flows with Minimum Typings

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Computer Science Department Naval Postgraduate School Monterey, CA
93943

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

14

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

We show how these kinds of covert �ows can be han�
dled with just a simplemodi�cation to our original type
system based on the notion of a minimum type� We say
that a type � is minimum if � � � � for every type � ��
To handle the covert �ow arising from nontermination�
we merely change the typing rule for while e do c to
require that e have minimum type� Similarly� we in�
troduce a try command for each partial operation and
type the command minimally� Now� the variable c� in
the examples above� would not have minimum type� so
the thread bodies would not be well typed since neither
could be typed minimally�

The new typing rules allow us to prove theorems
about covert �ows� Our �rst covert��ow theorem estab�
lishes the property of termination agreement for well�
typed programs� It is proved with respect to a natural�
or �big�step�� semantics� Termination agreement is a
somewhat weaker statement about covert �ow than we
desire� This will lead us to a second theorem that es�
tablishes a stronger property for well�typed programs�
namely mutual progress�

To prove mutual progress� we need a transitional�
or �small�step�� style of semantics in order to make
statements about partial executions� We use a form of
transition semantics for this purpose which we call a
natural transition semantics 	NTS
 ���� It is derivable
directly from our natural semantics�

Soundness and completeness of the NTS� with re�
spect to the natural semantics� allows us to switch from
one semantic style to the other where appropriate� The
proof of mutual progress� for instance� depends on ter�
mination agreement which can be proved more easily in
the natural semantics than in the NTS since a natural
semantics is well suited for reasoning about complete
evaluation derivations� So we jump out of the progress
proof� by NTS soundness� to get termination agree�
ment� which is proved in the natural semantics� and
then re�enter� by NTS completeness� to carry out the
progress proof�

Finally� we consider a more restrictive type system
that also requires conditionals to be typed minimally�
Then we get an even stronger covert��ow result that
basically rules out covert timing channels in programs�
That is� no two executions of a well�typed program can
be distinguished by timing di�erences�

�� The Type System

The core language we consider consists of phrases�
each of which is either an expression or a command�
We let metavariable p range over phrases� e over ex�

pressions� and c over commands�

p �� e j c

e �� x j l j n j e� e� j e � e�

j e e� j e � e�

c �� e � e� j c� c�

j if e then c else c�

j while e do c
j letvar x � e in c
j try x e � e� in c

Metavariable x ranges over identi�ers� l over locations�
and n over integer literals� Integers are the only val�
ues� We use � for false and � for true� and assume
that locations are well ordered� All program I�O is
done through free locations in a program� The core
language includes a try command for one partial oper�
ation� namely� integer division� The scope of x in a try
command is c� Other partial operations can be intro�
duced in the same fashion� We want to consider only
those programming constructs that are fundamental to
a treatment of covert �ows in an imperative language�
For this reason� procedures and an assortment of other
language features� such as arrays� are not included�

Notice that try commands do not have catch
clauses for exception handling� A command like

try x e � e� in c catch c�

introduces an implicit �ow from e and e� to c� that
can be handled with a typing rule like those for any
guarded commands� Here� we focus on the case where
exceptions are not caught and therefore do not consider
try�catch commands�

As in our earlier type system� the types of the core
language are strati�ed�

� �� s
� �� � j � var j � cmd

Metavariable s ranges over security classes� which we
assume are partially ordered by �� Type � var is the
type of a variable and � cmd is the type of a command�

The typing rules for the core imperative language
are given in Figure �� They form a deductive proof sys�
tem for assigning types to expressions and commands�
They are given in a syntax�directed form and are equiv�
alent to a more �exible system where coercions can be
applied more freely� Typing rules for some expressions
are omitted since they are similar to rule 	arith
�

Typing judgements have the form

�� � � p � �

where � is a location typing and � is an identi�er typ�

ing � The judgement means that phrase p has type ��

�

	int
 �� � � n � �

	var
 �� � � x � � var �	x
 � var

	varloc
 �� � � l � � var �	l
 �

	arith
 �� � � e � �	
�� � � e� � �
�� � � e� e� � �

	r�val
 �� � � e � � var 	
� � � �

�� � � e � � �

	assign
 �� � � e � � var 	
�� � � e� � �	
� � � �
�� � � e � e� � � � cmd

	compose
 �� � � c � � cmd 	
�� � � c� � � cmd

�� � � c� c� � � cmd

	if
 �� � � e � �	
�� � � c � � cmd 	
�� � � c� � � cmd 	
� � � �

�� � � if e then c else c� � � � cmd

	try
 �� � � e � �	
�� � � e� � �	
�� ��x � � � � c � � cmd 	
� is minimum
�� � � try x e� e� in c � � cmd

	while
 �� � � e � �	
�� � � c � � cmd 	
� is minimum
�� � � while e do c � � cmd

	letvar
 �� � � e � �	
�� ��x � � var � � c � � � cmd

�� � � letvar x � e in c � � � cmd

Figure �� Typing Rules for Eliminating Covert Flows

�

assuming � prescribes types for locations in p and �
prescribes types for any free identi�ers in p� An identi�
�er typing is a �nite function mapping identi�ers to �
types� �	x
 is the � type assigned to x by � and ��x � ��
assigns type � to x and to variable x� � x� type �	x�
�
If � is dropped from a judgement� as in � � p � �� then
it is assumed to be empty� A location typing is also a
�nite function� but it maps locations to � types� The
notational conventions for location typings are similar�

One can understand the intuition behind our type
system as follows� in a guarded command like
while e do c� whenever c is executed� it is known that
e was true� Hence� if e � H� then c must not assign
to any variables of class L� for such assignments would
constitute an illegal downward �ow� The typing rule
therefore requires that c in this case have type H cmd �
which means that it only assigns to variables of class H�
However� assigning to variables is not the only way for
a command to transmit information�a command can
also transmit information by failing to terminate or by
aborting� Such failed executions transmit information
	covertly
 to an outside observer of the program�s ex�
ecution� who must be regarded as L� To prevent such
downward covert �ows� we require that the sources of
failed executions 	i�e� the guard of a while loop and
the denominator of a division in a try command
 have
minimum type�� The new restrictions on while and
try ensure that executing a command of type H cmd

does not transmit covert information to an outside ob�
server� because the command is guaranteed to termi�
nate successfully�

Of course� this does not rule out timing channels�
which use program execution time to transmit infor�
mation to the outside observer� In our �nal covert�
�ow theorem in Section �� we consider eliminating tim�
ing channels by also requiring the guard of conditional
commands to have minimum type� But this may make
the type system too restrictive to be practical� More
experience is needed to be sure�

�� Our First Covert�Flow Theorem

Our �rst covert��ow theorem is expressed with re�
spect to a natural semantics for closed phrases in the
core language� A closed phrase is evaluated relative to
a memory
� which is a �nite function from locations
to values� The contents of a location l � dom	

 is
the value
	l
� and we write
�l � n� for the memory
that assigns value n to location l� and value
	l�
 to a
location l� � l�
�l � n� is an update of
 if l � dom	

and an extension of
 otherwise�

�For simplicity� we also require the numerator of a division to

have minimum type	 This restriction can be relaxed	

The evaluation rules are given in Figure �� They
allow us to derive judgements of the form
 � e � n
for expressions and
 � c �
� for commands� Eval�
uating a closed expression e in a memory
 results in
an integer n� Expressions are pure in that they do
not alter memory when evaluated� Evaluating a closed
command c in a memory
 results in a new memory

�� Commands do not yield values�

We write �e�x�c to denote the substitution of e for
all free occurrences of x in c� and let
� l be memory

with location l deleted from its domain� Note the use
of substitution in rules 	div
 and 	bindvar
� It allows
us to avoid using environments in the semantics�

���� Termination Agreement

Now we can state our �rst covert��ow theorem�

Theorem ��� �Termination Agreement� Suppose

	a
 � � c � ��

	b

 � c�
��

	c
 � is a memory such that dom	

 dom	�

dom	�
� and

	d
 �	l

	l
 for all l such that �	l
 � � �

Then there is a memory �� such that � � c � �� and

��	l

�	l
 for all l such that �	l
 � � �

An alternative statement of the theorem is if a com�
mand c is well typed� and
 and � are memories such
that 	c
 and 	d
 are true� then either

�� c fails to terminate successfully under
 and �� or

�� c terminates successfully under
 and � and the
resulting memories agree on all locations whose
types are bounded by � �

The theorem departs from the noninterference theorem
of ��� in that it does not require c to terminate success�
fully under both
 and �� There is a hypothesis about
the successful termination of c under
 only� With the
remaining hypotheses� it is enough to ensure that c also
terminates successfully under ��

Before proving the theorem� we need a number of
lemmas� The �rst four lemmas are taken from our ear�
lier work ���� They can be proved for the typing rules
in Figure � as well�

Lemma ��� �Simple Security� If � � e � � � then

for every l in e� �	l
 � � �

�

	val

 � n� n

	contents

 � l �
	l
 l � dom	

	add

 � e� n	
 � e� � n�

 � e � e� � n� n�

	update

 � e� n

 � l � e�
�l � n�

l � dom	

	sequence

 � c�
�	
� � c� �
��

 � c� c� �
��

	branch

 � e� n	 	n nonzero

 � c�
�

 � if e then c else c� �
�

 � e� �	

 � c� �
�

 � if e then c else c� �
�

	div

 � e� n	

 � e� � n�	 	n� nonzero

 � �	n� n�
�x�c�
�

 � try x e� e� in c�
�

	loop

 � e� �

 � while e do c�

 � e� n	 	n nonzero

 � c�
�	

� � while e do c�
��

 � while e do c�
��

	bindvar

 � e� n	
l is the least location not in dom	

	

�l � n� � �l�x�c�
�

 � letvar x � e in c�
� � l

Figure �� Core Language Natural Semantics

�

Lemma ��� �Con	nement� If �� � � c � � cmd�

then for every l assigned to in c� �	l
 	 � �

Lemma ��
 �Expression Substitution� If �� ��x �
� � � p � �� then �� � � �n�x�p � �� and if �� � � l � � and

�� ��x � �� � p � ��� then �� � � �l�x�p � ���

Lemma ��� If
 � c�
�� then dom	

 dom	
�
�

We introduce the following lemmas� each of which
can be proved by induction on phrase structure�

Lemma ��� �Determinism� Suppose �	l

	l
�
for every l in e�
 � e � n� and � � e � n�� Then

n n��

Lemma �� Suppose � � e � � and
 is a memory

such that dom	

 dom	�
� Then there is an integer

n such that
 � e� n�

Lemma ��� If �� � � c � � cmd and c contains an

occurrence of while or try� then � is minimum�

Lemma ��� Suppose � � c � � cmd and c does not

contain an instance of while or try� and
 is a mem�

ory such that dom	

 dom	�
� Then there is a mem�

ory
� such that
 � c�
��

Notice the purely syntactic hypotheses under which
termination is guaranteed in Lemma ���� Limiting par�
tial recursion to typed commands in a language 	e�g�
while or letrec
 makes it easier to get a sound and
practical type system to control covert �ows� Some
programming language features make it much harder
to achieve such a system� For example� some people
have proposed extending Java with higher�order func�
tions� In the context of an imperative language� such
as Java� higher�order functions make recursion possible
through circularity in memory� one can bind a variable
to a function containing a free occurrence of that vari�
able ���� Such an extension makes it harder for the
type system to be aware of potentially nonterminating
programs� and yet be �exible�

Typing the while and try commands minimally
prevents them from taking di�erent execution paths
under two memories that agree on locations with min�
imum type� A conditional� however� is still free to take
di�erent execution paths under two such memories�

The proof of the termination agreement theorem re�
sembles the proof of noninterference in ���� It proceeds
by induction on the structure of
 � c �
�� We give
the proof for one of the more interesting cases� namely�
evaluation rule 	branch
� The remaining evaluation
rules are treated similarly�

	branch
� Suppose
 � if e then c else c� �
�

and the typing derivation ends with an application of
rule 	if
�

� � e � � �	
� � c � � � cmd 	
� � c� � � � cmd 	
� �� � � �

� � if e then c else c� � � �� cmd

There are two cases�

�� � � � � � Then suppose the evaluation under
 ends
with the second rule for 	branch
�

 � e� �

 � c� �
�

 � if e then c else c� �
�

By the simple security lemma� �	l
 � � � for every l
in e and so �	l
 � � for every l in e� By hypothesis
	d
 then� �	l

	l
 for every l in e� and thus
� � e � � by Lemmas ��� and ���� By induction
there is a memory �� such that � � c� � �� and
��	l

�	l
 for all l such that �	l
 � � � Then
� � if e then c else c� � �� by the second rule
for 	branch
� Evaluation under
 ending with
the �rst rule for 	branch
 is handled similarly�

�� � � �� � � Then � � is not minimum� and thus by
Lemma���� neither c nor c� contains an occurrence
of while or try� So there is a memory �� such
that � � if e then c else c� � �� by Lemma ����
By the Con�nement Lemma� �	l
 	 � � for every l
assigned to in c or c�� Thus for every l assigned to
in c or c�� �	l
 �� � since otherwise � � � � � So if
l � dom	�
 and �	l
 � � � then l is not assigned to
in c or c�� So
�	l

	l
 and ��	l
 �	l
 for all l
such that �	l
 � � � and we�re done by 	d
�

�� Our Second Covert�Flow Theorem

Termination agreement is still a somewhat weaker
statement than we want about what the type sys�
tem actually guarantees in terms of protection against
covert �ows� It says that if c does not terminate suc�
cessfully under one memory then it doesn�t terminate
successfully under the other memory either� So the two
executions cannot be distinguished by one of them ter�
minating successfully and the other failing to do so�
But what about distinguishing nontermination from
abnormal termination� The theorem does not rule out
the possibility that c fails to terminate under one mem�
ory and gets stuck 	aborts
 under the other�

�

For example� suppose location l ranges over � and �
and that l � dom	

 and l � dom	�
� Now if
 and �
agree on all locations of minimum type� then

try z �� l in
while 	l � �
 do �

may get stuck under
 yet fail to terminate under � if
l does not have minimum type� These two executions
can be distinguished� What we want to show yet is
that if a command c is well typed and it fails to ter�
minate successfully in some way under
� then it also
fails to terminate successfully in the same way under
�� Stated in another way� execution of c under � makes
progress i� its execution under
 does� This brings us
to our second covert��ow theorem� the mutual progress

theorem� However� before we can state and prove the
theorem� we need another form of semantics�

A natural semantics allows us to state properties
about successful or complete program executions� not
partial ones� So it is not suited for proving properties
about intermediate steps of a computation like progress
theorems� For this� we use a new form of semantics
which we call a natural transition semantics 	NTS
 be�
cause it is derived directly from the natural semantics
���� Unlike the treatment of NTS in ���� here it is for�
mulated as a set of transition rules� These rules admit
proofs of properties about a single transition by induc�
tion on the structure of its derivation�

���� Natural Transition Semantics

A traditional transition semantics for an impera�
tive programming language de�nes transitions between
con�gurations that involve memories and terms of the
language ���� Here we de�ne transitions between par�

tial derivation trees which represent partial derivations
in the natural semantics�

Partial derivation trees are de�ned as follows� First�
we add to the complete judgments
 � e � n and

 � c �
�� a new kind of judgment called a pending

judgment which has the form

 � p��

where p is a phrase� Then partial derivation trees are
de�ned inductively�

�� �
 � e� n�� �
 � c�
�� and �
 � p� �� are par�
tial derivation trees�

�� if P is a predicate� then �P � is a partial derivation
tree�

�� if T�	 � � � 	 Tn are partial derivation trees� then
�
 � e� n�	T�	 � � � 	 Tn
� �
 � c�
��	T�	 � � � 	 Tn
�

and �
 � p� ��	T�	 � � � 	 Tn
 are partial derivation
trees�

For example� �
 � l �
	l
�	�l � dom	

�
 is a partial
derivation tree� We say that a partial derivation is com�

plete if it has no subtree rooted at �
 � p� ��� Every
complete derivation tree is a partial derivation tree�
We let I� J � and K range over complete derivation
trees and T over partial derivation trees�

Rules of the natural transition semantics for expres�
sions and the while and try commands� are given in
Figures �� �� and �� We use m� j� and k in the rules
as indices that start at zero� Transition rules have
been omitted for the other commands since their for�
mulation from the natural semantics is similar� Let
�
� be the re�exive and transitive closure of �
�

that is� T
�
�
 T � for any T � T

k��
�
 T � if there exists

T �� such that T
k
�
 T �� and T �� �
 T �� and T �
� T �

if T
k
�
 T � for some k 	 ��

The transition rules also include a rule
	congruence
 which allows execution of compound
phrases�

T �
 T �

�
 � p� ��	J�	 � � � 	 Jn	 T
 �

�
 � p� ��	J�	 � � � 	 Jn	 T �

It allows the semantics to �scale up��

Lemma
�� Suppose that T and T � are partial deriva�

tion trees� n 	 �� and k 	 �� Then T
k
�
 T � i�

�
 � p� ��	J�	 � � � 	 Jn	 T

k
�

�
 � p� ��	J�	 � � � 	 Jn	 T �

Proof� Both directions can be proved by induction on
k� using rule 	congruence
� The 	if
 direction re�
quires observing that if T �
� T � then the number of
children of the root of T � is at least that of the root of
T � and if

T �
� �
 � p� ��	T�	 � � � 	 Tm

for m 	 �� then T is rooted at �
 � p� ���

It should be noted that controlling the lifetime of
locations in a traditional transition semantics is tricky
since one is limited to transitions between con�gura�
tions involving language terms� But with transitions
between partial derivation trees� we can exploit di�er�
ent tree structure and avoid introducing extra infor�
mation into con�gurations like the number of �live�
locations ���� The transition rule that allocates a loca�
tion for an instance of letvar is a transition from a tree

�

	t�val
 �
 � n� �� �
 �
 � n� n�

	t�contents
 l � dom	

�
 � l� �� �
 �
 � l�
	l
�	�l � dom	

�

	t�add
 �
 � e � e� � �� �
 �
 � e� e� � ��	�
 � e� ��

	�
 �
 � e� e� � ��	�
 � e� n�	J�	 � � � 	 Jk

 �

�
 � e� e� � ��	

�
 � e� n�	J�	 � � � 	 Jk
	
�
 � e� � ��

	�
 �
 � e� e� � ��	�
 � e� n�	J�	 � � � 	 Jk
	
�
 � e� � n��	K�	 � � � 	Km

 �

�
 � e� e� � n � n��	
�
 � e� n�	J�	 � � � 	 Jk
	
�
 � e� � n��	K�	 � � � 	Km

Figure �� Natural Transition Semantics for Expressions

whose root has exactly one child to one whose root has
exactly three children� This di�erent tree structure can
be exploited in the rules to specify in a more natural
way when locations should be deallocated�

We say that a partial derivation tree T is sound if
for every node in T of the form �� � c� ���� we have
� � c� ��� for every node of the form �� � e� n�� we
have � � e� n� and for every node of the form �P �� P
is true�

Lemma
�� If T and T � are partial derivation trees

such that T is sound and T �
 T �� then T � is sound�

Proof� Induction on the structure of the derivation of
T �
 T ��

By an easy induction on the number of transitions�
we have that if T �
� T � and T is sound� then so is
T �� This leads to the following corollary�

Proposition
�� �NTS Soundness� If �
 � e� ��
�
� �
 � e� n�	J�	 � � � 	 Jm
 then
 � e� n� Further�
if we have �
 � c� �� �
� �
 � c�
��	J�	 � � � 	 Jm
�
then
 � c�
��

Completeness of the transition semantics is given by

Proposition
�
 �NTS Completeness� Suppose

that
 � e � n and that the judgment has a complete

derivation tree J � Then �
 � e� �� �
� J � Further�

if
 � c�
� and this judgment has a complete deriva�

tion tree J � then �
 � c� �� �
� J �

Proof� Induction on the structure of the derivation of

 � e� n and of
 � c�
�� using Lemma ����

���� Mutual Progress

Next we establish the mutual progress property for
the type system�

Theorem
�� �Mutual Progress� Suppose

	a
 � � c � ��

	b
 � and
 are memories such that dom	

dom	�
 dom	�
�

	c
 �	l

	l
 for all l such that �	l
 � � �

	d
 �
 � c� �� �
� T � and

	e
 T has a leaf of the form �
� � c� � �� where c� is a
try command�

Then there is a location typing �� and partial derivation

tree T � such that T � has a leaf of the form ��� � c� � ���
�� � c� �� �
� T �� � � ��� dom	
�
 dom	��

dom	��
� and
�	l
 ��	l
� for all l such that ��	l
 � � �

�

	t�div
 �
 � try x e� e� in c� �� �

�
 � try x e� e� in c� ��	�
 � e� ��

	�
 �
 � try x e� e� in c� ��	�
 � e� n�	K�	 � � � 	Km

 �

�
 � try x e� e� in c� ��	

�
 � e� n�	K�	 � � � 	Km
	
�
 � e� � ��

	�
 n� nonzero
�
 � try x e� e� in c� ��	�
 � e� n�	K�	 � � � 	Km
	

�
 � e� � n��	J�	 � � � 	 Jk

 �

�
 � try x e� e� in c� ��	
�
 � e� n�	K�	 � � � 	Km
	
�
 � e� � n��	J�	 � � � 	 Jk

�n� nonzero�	
�
 � �	n� n�
�x�c� ��

	�
 �
 � try x e� e� in c� ��	
�
 � e� n�	K�	 � � � 	Km
	
�
 � e� � n��	J�	 � � � 	 Jk
	
�n� nonzero�	
�
 � �	n� n�
�x�c�
��	I�	 � � � 	 Ij

 �

�
 � try x e� e� in c�
��	
�
 � e� n�	K�	 � � � 	Km
	
�
 � e� � n��	J�	 � � � 	 Jk
	
�n� nonzero�	
�
 � �	n� n�
�x�c�
��	I�	 � � � 	 Ij

Figure �� Natural Transition Semantics for try

�

	t�loop
 �
 � while e do c� �� �

�
 � while e do c� ��	�
 � e� ��

	�
 �
 � while e do c� ��	�
 � e� ��	J�	 � � � 	 Jk

 �

�
 � while e do c�
�	�
 � e� ��	J�	 � � � 	 Jk

	�
 n nonzero
�
 � while e do c� ��	�
 � e� n�	J�	 � � � 	 Jk

 �

�
 � while e do c� ��	
�
 � e� n�	J�	 � � � 	 Jk
	
�n nonzero�	
�
 � c� ��

	�
 �
 � while e do c� ��	
�
 � e� n�	J�	 � � � 	 Jk
	
�n nonzero�	
�
 � c�
��	K�	 � � � 	Km

 �

�
 � while e do c� ��	
�
 � e� n�	J�	 � � � 	 Jk
	
�n nonzero�	
�
 � c�
��	K�	 � � � 	Km
	
�
� � while e do c� ��

	�
 �
 � while e do c� ��	
�
 � e� n�	J�	 � � � 	 Jk
	
�n nonzero�	
�
 � c�
��	K�	 � � � 	Kj
	
�
� � while e do c�
���	I�	 � � � 	 Im

 �

�
 � while e do c�
���	
�
 � e� n�	J�	 � � � 	 Jk
	
�n nonzero�	
�
 � c�
��	K�	 � � � 	Kj
	
�
� � while e do c�
���	I�	 � � � 	 Im

Figure 	� Natural Transition Semantics for while

��

Proof� Induction on the number of transitions in
�
 � c� �� �
� T � Aside from the basis� we show only
one case� namely 	t�loop
� It is a good representative
case because it illustrates the key steps one needs in
order to prove the theorem for all other rules of the
transition semantics�

For zero transitions� we have

�
 � c� �� �
� �
 � c� ��

where c is a try command� Let �� � and we�re done
by hypotheses 	b
 and 	c
�

Now suppose c iswhile e do c��� There are two sub�
cases to consider here� They correspond to whether the
leaf of hypothesis 	e
 arises before or after c has made a
transition according to rule 	t�loop
	�
� First we con�
sider the case when it arises before� Since commands
are not expressions� we have� by hypotheses 	d
 and
	e
� that c�� contains a try command c��

�
 � c� �� �
 �
 � c� ��	�
 � e� ��
 �
�

�
 � c� ��	J�

where J� is a complete derivation tree rooted at
�
 � e� n� and n is nonzero� and �nally that

�
 � c� ��	J�
 �

�
 � c� ��	J�	 �n nonzero�	 �
 � c�� � ��
 �
�

�
 � c� ��	J�	 �n nonzero�	 T

where T contains a leaf of the form �
� � c� � ���
By rule 	t�loop
� we have

�� � c� �� �
 �� � c� ��	�� � e� ��

Now we have � � e � � � and dom	�
 dom	�
� so there
is an integer n� such that � � e � n�� by Lemma ����
Suppose this judgment has a complete derivation tree
J �

� rooted at �� � e� n��� By completeness of the tran�
sition semantics�

�� � e� �� �
� J �

�

At this point� we need to show that execution of c does
not proceed with a transition by rule 	t�loop
	�
 since
this rule cannot lead to a derivation tree with the de�
sired leaf�

We have � � e � � � and � � is minimum by the typing
rule 	while
� So �	l
 � � � for every l in e by the simple
security lemma� Also� � � � � since � � is minimum� So
�	l
 � � for every l in e� and thus �	l

	l
 for every
l in e� by hypothesis 	c
� Further� by soundness of the
transition semantics�
 � e � n� Thus� n� n by
Lemma ���� So n� is nonzero and we then have by rule
	t�loop
	�
 and Lemma ���� that

�� � c� ��	�� � e� ��
 �
�

�� � c� ��	J �

�	 �n
� nonzero�	 �� � c�� � ��

Now by Lemma ����

�
 � c�� � �� �
� T

and so by induction�

�� � c�� � �� �
� T �

T � has a leaf of the form ��� � c� � �� and there is
a location typing �� such that � � ��� dom	
�

dom	��
 dom	��
� and ��	l

�	l
 for all l such
that ��	l
 � � � Finally� by Lemma ��� again�

�� � c� ��	J �

�	 �n
� nonzero�	 �� � c�� � ��
 �
�

�� � c� ��	J �

�	 �n
� nonzero�	 T �

Now consider the case when the leaf arises after the
while command has made a transition according to
rule 	t�loop
	�
� Suppose that

�
 � c� �� �
�

�
 � c� ��	J�	 �n nonzero�	 J�	 �

� � c� ��
 �
�

�
 � c� ��	J�	 �n nonzero�	 J�	 T

where J� is a complete derivation tree rooted at
�
 � e� n�� such that n is nonzero� J� is a complete
derivation tree rooted at �
 � c�� �
��� and T has a
leaf of the form �
�� � c� � ���

By Lemma ���� � � e � n�� Suppose this judg�
ment has a complete derivation tree J �

� rooted at
�� � e� n��� We also have � � e � � � where � � is mini�
mum by typing rule 	while
� So by the simple security
lemma and hypothesis 	c
� �	l

	l
 for every l in e�
Thus� n� n� by Lemma ���� and so n� is nonzero�

By the soundness of the transition semantics� we
have
 � c�� �
�� So by the termination agreement
theorem� there is a �� such that � � c�� � �� and
��	l

�	l
 for all l such that �	l
 � � � Suppose
this judgment has complete derivation tree J �

� rooted at
�� � c�� � ���� By the completeness of the transition se�
mantics� Lemma ���� and rules 	t�loop
� 	t�loop
	�

and 	t�loop
	�
� we have

�� � c� �� �
�

�� � c� ��	J �

�	 �n
� nonzero�	 J �

�	 ��
� � c� ��

Now by Lemma ����

�
� � c� �� �
� T

By Lemma���� and since dom	

 dom	�
 dom	�
�
we have dom	
�
 dom	��
 dom	�
� Thus� by in�
duction�

��� � c� �� �
� T �

T � has a leaf of the form ���� � c� � �� and there is
a location typing �� such that � � ��� dom	
��

��

dom	���
 dom	��
 and ���	l

��	l
 for all l such
that ��	l
 � � �

Finally� by Lemma ����

�� � c� ��	J �

�	 �n
� nonzero�	 J �

�	 ��
� � c� ��
 �
�

�� � c� ��	J �

�	 �n
� nonzero�	 J �

�	 T
�

and we�re done�

Notice in the proof that we have the guard of a
while command evaluating to the same value under

 and � since the command is typed minimally by rule
	while
� The proof also needs the guard of a condi�
tional to evaluate to the same value under
 and �� yet
rule 	if
 does not require a conditional to be minimally
typed� Nevertheless� it will be minimally typed due to
hypotheses 	a
 and 	e
 of the theorem� and Lemma ����

The mutual progress theorem tells us that if exe�
cution of a command c in a memory
 depends on
executing

try x e � e� in c�

in some memory
�� then c�s execution in � also de�
pends on executing the try command in some mem�
ory � �� Furthermore� we have that �� � � e� � � � for
minimum type � � since c is well typed� The theo�
rem gives us a typing �� that contains �� and hence
��� � � e� � � � The theorem also tells us that �� and

� agree on all locations in the domain of �� with min�
imum type� Thus either both executions proceed 	e�

evaluates to the same nonzero integer in
� and ��
 or
both get stuck 	e� evaluates to zero in
� and ��
�

�� Our Third Covert�Flow Theorem

Looking at the mutual progress theorem more
closely� if execution of a command c gets stuck under
a memory
� then its execution also gets stuck under
any other memory � that agrees with
 on locations of
minimum type� This says that executions of c under
memories that di�er only on locations of nonminimum
type cannot be distinguished on the basis of abnormal
termination versus nontermination� But the number of
steps c takes under
 and � may di�er�

Consider a well�typed composition c� c� where c con�
tains a conditional� with a nonminimum guard� and
only c� contains a try command� Then although c� may
get stuck under
 and �� more steps may be needed
to do so under one memory than under the other due
to di�erent execution paths taken by the conditional
in c� 	Remember that conditionals with nonminimum
guards can still be typed minimally by subtyping�
 As
long as conditionals are not typed minimally� we can�
not say that if execution of a well�typed command c

gets stuck after k steps under
� then it does so after
k steps under � as well�

As our �nal covert��ow theorem� we prove a timing
agreement theorem for a more restricted type system�
The restricted system is the original type system with
rule 	if
 changed so that � is required to be minimum�
Assume� hereafter� that � now refers to the more re�
stricted system�

First we need two lemmas�

Lemma ��� If
 and � are memories� dom	

dom	�
 and �
 � e� ��
k
�
 �
 � e� n�	J�	 � � � 	 Jn
�

then

�� � e� ��
k
�
 �� � e� n��	J �

�	 � � � 	 J
�

n

Proof� Straightforward induction on k� using
Lemma ����

The next lemma is a stronger form of termination
agreement 	Theorem ���
 for the more restricted type
system� It does not hold if conditionals are not mini�
mally typed�

Lemma ��� Suppose � � c � ��
 and � are memories

such that dom	

 dom	�
 dom	�
�
	l
 �	l
 for
all l such that �	l
 � � � and

�
 � c� ��
k
�
 �
 � c�
��	J�	 � � � 	 Jn

Then we have �� � c� ��
k
�
 �� � c� ���	J �

�	 � � � 	 J
�

n

and ��	l

�	l
 for all l such that �	l
 � � �

Proof� Induction on k� using Lemmas ��� and ����

Theorem ��� �Timing Agreement� Suppose

	a
 � � p � ��

	b
 � and
 are memories such that dom	

dom	�
 dom	�
�

	c
 �	l

	l
 for all l such that �	l
 � � �

	d
 �
 � p� ��
k
�
 T � for k 	 �� and

	e
 T has a leaf of the form �
� � p� � ���

Then there is a location typing �� and partial derivation

tree T � such that T � has a leaf of the form ��� � p� � ���

�� � p� ��
k
�
 T �� � � ��� dom	
�
 dom	��

dom	��
� and
�	l
 ��	l
� for all l such that ��	l
 � � �

Proof� Induction on k� using Lemmas ��� and ����

��

class TimingChannel implements Runnable �

boolean val � false�

TimingChannel��

throws InterruptedException �

new TimeSlicer����

new Thread�this��start���

try Thread�sleep�	��

finally�

System�out�println�
val � true
��

�

public void run�� �

double x�

if �val�

for �int i � �� i ��� i���

x � Math�exp�Math�PI� � i�

System�out�println�
val � false
��

�

public static void main�String args���

throws InterruptedException �

try new TimingChannel���

finally�

�

�

Figure
� Timing Channel with Java Threads

Clearly timing agreement is a stronger property than
either termination agreement or mutual progress� But
the cost for this added strength is a much more restric�
tive typing rule for conditionals� Though it might be
argued the rule is impractical for writing systems soft�
ware or TCB source code� it may be the kind of rule
that should be used in writing �Web programs� like
Java Applets� The reason is that with threads� timing
di�erences become quite easy to observe from within

programs�

For example� take the Java program in Figure ��
The idea is that we want to determine the contents of
the boolean variable val by setting up two compet�
ing threads� The main thread creates another thread�
the TimingChannel thread� whose run method checks
whether val is true� doing some computation if it is and
nothing otherwise� except print a string� Notice that
the run method does not have any illegal implicit �ows
in the sense of Denning�s program certi�cation ��� ���
There is a third thread� called the TimeSlicer� which
is a daemon thread running at a higher priority� It re�
awakens every �ve milliseconds and immediately goes
back to sleep which guarantees round�robin schedul�
ing among the other two threads�� After creating the
TimingChannel thread� the main thread sleeps for two
milliseconds� If it awakens before the TimingChannel

�The timeslicer was needed because our example was devel�

oped using Solaris JDK �	
� which� unlike the JDK for Windows

NT� does not schedule threads in a round�robin fashion	

thread completes� then the �rst string output will be
val � true� otherwise it will be val � false� The
�rst string usually re�ects the variable�s contents accu�
rately� This is not a completely reliable way of getting
the contents due to thread scheduling variations� but
it works often enough�

So it seems that conditionals should also be typed
minimally� But this may not be the best way to deal
with them� After all� unlike the earlier Java examples�
threads here seem to have a critical role� Perhaps with
a proper treatment of threads� conditionals won�t need
to be typed so restrictively�

	� Conclusion

The idea of analyzing source code for covert infor�
mation �ow is not new� He and Gligor� for example�
informallydescribe analyzing TCB source code for such
�ows ���� Others have recognized the need to augment
Denning�s original secure��ow certi�cation with rules
that deal with global �ows arising from loops and pos�
sibly nonterminating programs ��� ��� But these e�orts
provide no formal speci�cation nor proof of the proper�
ties that are guaranteed to hold for programs that pass
the analyses� In contrast� we have given a rigorous ac�
count of various properties that a program has if it is
typeable in our covert��ow type system�

References

��� G� Andrews and R� Reitman� An Axiomatic Ap�
proach to Information Flow in Programs� ACM

Trans� on Prog� Lang� and Systems� �	�
��� ���
�����

��� D� Denning and P� Denning� Certi�cation of Pro�
grams for Secure Information Flow� Communica�

tions of the ACM� ��	�
���� ���� �����

��� C� Gunter� Semantics of Programming Languages�
The MIT Press� �����

��� J� He and V� Gligor� Formal Methods and Au�
tomated Tool for Timing�Channel Identi�cation
in TCB Source Code� In Proceedings �nd Euro�

pean Symposium on Research in Computer Secu�

rity� pages �� ��� November �����

��� M� Mizuno and A� Oldehoeft� Information Flow
Control in a Distributed Object�Oriented System
with Statically�Bound Object Variables� In Pro�

ceedings 	
th National Computer Security Confer�

ence� pages �� ��� �����

��

��� M� Ozgen� A Type Inference Algorithm and Transi�
tion Semantics for Polymorphic C� Master�s thesis�
Naval Postgraduate School� �����

��� G� Smith and D� Volpano� A Sound Polymorphic
Type System for a Dialect of C� Science of Com�

puter Programming� ����� To appear�

��� D� Volpano and G� Smith� A Type Soundness Proof
for Variables in LCF ML� Information Processing

Letters� ��	�
���� ���� �����

��� D� Volpano� G� Smith� and C� Irvine� A Sound
Type System for Secure Flow Analysis� Journal of
Computer Security� �	�
�� ��� �����

��

